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ABSTRACT

VAt the classical level, when one considers boundary value problems for
nonlinear scalar first order partial differential equations there are parts of

the boundary where one does not expect to be able to prescribe boundary .

data. Likewise, uniqueness theorems can be proved for solutions which are

prescribed only on parts of the boundary. However, globally defined classical

solutions of first order nonlinear problems are rare, owing to the formation

of "shocks". This theoretical difficulty has recently been overcome for

equations of Hamilton-Jacobi type via the development of the theory of

viscosity solutions, a sort of generalized solution for which good existence

and uniqueness theorems hold. This note is concerned, in the context of

viscosity solutions, with identifying parts of the boundary which are

irrelevant for a given equation from the point of view of requiring data in

order to prove uniqueness. This involves knowing when a viscosity solution of

an equation (in the viscosity sense) in the interior of the domain may be

extended by continuity to a solution in the viscosity sense to points on the

boundary. The results obtained to this effect are supplemented by examples

delimiting their sharpness. -
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Viscosity Solutions of Hamilton-Jacobi Equations at the Boundary

by

Michael G. Crandall and Richard Newcomb

Introduction. -

We begin by recalling an important notion of generalized solutions for scalar

nonlinear first order partial differential equations. Let K be a subset of jranti

P:KXWRM R be continuous (i.e., FP C(KxW11M)J. A function u &C(K) is called a

viscosity solution of F(y~uDu) 4 0 on K if for each real-valued function 'IP which is

continuously differentiable in a neighborhood of K and each local maximum a X of

u - relative to K one has

(0.1) ?(z'u(z),DW(z)) Ic 0.

Here DAP (4p,..DIfp yM is the gradient of V9. We will use the notation C1 (K) to mean

the set of functions which are defined and continuously differentiable in a

neighborhood of K. Similarly, a viscosity solution of r(y,u,tnu) )0 in X is a

u ( CMK such that for every q0 cCK) and local minimum a k X of u - 1 relative to W

one has

*(0.2) 3(z,u(z),DP(z)J 0.

* A viscosity solution of F - f on K is a function which is a viscosity solution of both

r C 0 and r )0 0. We also call viscosity solutions of T 4 0 (F ;0 0) viscosity

* subsolutiona (respectively, supermolutions) of IF - 0. Observe that these notions do

* not require u to be anywhere differentiable. Indeed, although we will not do so here,

there are circumstances when it is appropriate to require only a semicontinuity of u

rather than continuity. The set X is also general - we have not yet restricted it In

* any way - but we will primarily be concerned with cases in which K satisfies

S9 L K L. i, where 0 denotes an open subset of R", is its closure and all is its '2ceSIon For

* ~boundary. . -

JUS t if i cI_ C !
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The notion of viscosity solutions has become important in providing a theoretical

basis for the interaction between equations of Hamilton-Jacobi type. control theory

and differential games. l he first uniqueness theorems using this notion are proved in

Crandall and Lions 14]. Crandall, rvane and Lions [3] provides a simpler introduction

to the subject while the book Lions 181 and the review paper Crandall and Souganidis

[6) provide a view of the scope of the theory and the references to much of the recent0

literature.

While one primarily had the case in which F is open in mind in the theory

referred to above, [4, Remark 1.131 pertained to the general case. moreover, in

(4,Proposition V.11 it is proved that a viscosity solution of6

(0.3) Ut +' H(x,t,u,Du) -0 on Cx(0,T)

where 0 is an open subset of 10 and Du - (u, ..........is the spatial gradient of u,

which happens to extend continuously to Ox(0,T) is also a viscosity solution on the

set Ox(0,T]. See also (3,Lemma 4.1]. of course, (0.3) is subsumed under the general

case above by putting N =N + 1, y, x 1 ... , yMi xyd, and yK t, and

r~y~*(p,...pN+)) pH+i + R(l .

It is further remarked in (4] that this extension property depends on a certain,

monotonicity of the equation in the direction of the normal to the domain, and this is

the point we will examine in some generality in this note.

Our current Interest in this point is partly generated by recent remarks of R.

Jensen [71. Jensen had the idea of formulating the uniqueness theorem on arbitrary

closed sets, a formulation with attractive features. Our main results, which we

introduce and prove in Section 1, are criteria which Identify boundary points at which

an inequation is automatically satisfied in the viscosity sense if it holds In the

interior of a set, extending the above mentioned result for (0.3). Examples

establishing the sharpness of the result are also given, and we formulate .

corresponding uniqueness theorems. .

2
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Section 1. The Extension Theorem and Examples

in this section 0 denotes an open subset of I and 30 is its boundary. We -

consider sub - and supersolutions u ( C(1) of an equation r - 0 on 0 and define a

subset I F of 30 (which we call the part of 30 irrelevant for F). In nice situations u . .".'*-*

is then a sub - or supersolution (as appropriate) of F = 0 on .'.

a+ lip. We will be concerned about how general u, A and F may be and still have the

result hold. With this in mind, we shall make the definitions for a general open set

0. We need to define an appropriate set of normals to a point ...

a 0. The open ball of radius r centered at z in 3P will be denoted by

Br(Z)l i.e.

Br(B ( y t: ly - ZI < 0}. .

Definition 1. Let z 3 0. Then v \O} is an inward normal to at z if there is*"

a X > 0 for which the open ball of radius ]jiA centered at z + Xv is contained in 0,

i.e. " " '

DAVI(z + Xv) C 9.

- . 1.-
The set of all inward normals to 0 at z ( K is denoted by N1g(z).

Another description of 16(z) can be given the following way: For each

y t there are points of 30 which are nearest y. Let Py be the set of such points: '

(1.1) Py a { a ( 3s ly - -1 4 ly - wl for w t MI. ,

Then

(1.2) N4g(z) - W(y - ) , y t , z t Py, X > 0),

that is, the inward normal vectors are Just those in the directions from z to points

in 0 for which z is a nearest point in 0. We remark that there are a variety of

choices for the definitions of *normal" and "tangent" vectors to an arbitrary set. We

are using a notion appropriate for our purposes - as regards others and relationships -.

among then, see Clarke (2) and Aubin and Skeland (1]. The reader can easily convince e* ;

himself that NW) my be empty and it may be 3P\(O) when z a i.

j.. .
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Definition 2. Let z k 3G. Then z (IF if there in an r > 0 such that for all

y 1 30 Afl r(z) and all v t Ng(y) and all (u,p) ( "' "

(1.3) F(y,u,p + v) . F(y,u,p).

In other words, z is irrelevant for F if P is nonincreasing in the inward normal

directions in a neighborhood of z. Of course, IV depends on 2 as well as F, but we

won't need to indicate this in this note.

Remark. Observe that the set of vectors v for which (1.3) holds for all

p k Is closed under addition. Using this and the continuity of P we deduce that if

z IF then

F(Z,u,p + V) ( F(z,u,p)

for all v in the closed convex hull of lim sup Ng(y), which may well be a much larqer
y~z

set than Wg(z).

We would like to prove that if u t C() is a viscosity sub - or supersolution of

F 0 in Q, then it is also a viscosity sub - or supersolution in 0 + IF # but this is

not true without further restrictions. To formulate our first result we still need to

define "regular points" of M. These will be defined by properties of the function

(1.4) d(y) = inf(ly - w12: w ,

which is the square of the distance from y to 32. Associated with d(y) is the mapping %

P of (1.1). Indeed

Py - (w 3 3D: d(y) - ly - w1
2 

}.

If Py is a singleton (i.e., there is only one point in 3D nearest y), we will abuse

notation and also use Py to denote this closest point.

Definition 3. Let z f 3D. Then z is regular for 11 if there is an r > 0 such that if

y ( Br(z) n a, then Py is a singleton, d is differentiable at y and S

(1.5) Ddly) - 2(y - Py).

Remark. It is a standard and elementary exercise to show that if 2 is of class C
2  .'.....

near z a 3D, then z is regular for 01. , -

4
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Theorem 1. Let F V C(xa'I). Let z & IF be regular for 2, u t C(S2 + it,) be

Lipschitz continuous near x and u be a viscosity solution of P 4 0 (F ), 0) on (.Then

u is also a viscosity solution of P 4 0 (respectively, r ;o 0) on

a Wa. in particular, if u1 is a viscosity solution of F - 0 on 2, then it is a .

viscosity solution on 0,()

Before proving this result, we give two examples. The first shows that the

restriction to Lipschitz continuous u's Is necessary in this generality, while the

second show that if z is not regular for 0 the result may fail.

Example I. Consider the situation 0 -(0,1) and

F(x,u,ul) x0 a' - 1 0,

where 0 < a < 1. In this example. 0 tc 1p, since r(0,u,p) is Independent of p and

hence is nonincreasing in all directions. Moreover, 0 is clearly regular for 0 . The

function a ~~/le is a classical (and hence viscosity) solution of F - 0 on

0. However, u Is not Lipschitz continuous near 0. If W(x) - x then u - 9p has a

minim relative to Q0- 10,11 at 0 but r(o,u(0,f#1(0)) =-1 < 0, so u is not a

viscosity supersolution on 10,I).

Zzosle 2. Let M 2 and (x,y) denote points of 3P2. put

0 (x, Y) & U2 : 0 < y < x12. < x <

and

(1.6) rtx,y,u,u 1 1 uy) u.~ + 0yu.

We have

I if (X,y) -(0.0).

X ((Xr)j {A(2x,-I)t A > 0) if (xty) n (,), 0 < 21 <

j(0,A)s A' > 01 if (xey) - (x,0) *0 < 21 <

and it Is straightforward to check that (0,0) E: 11p. For example, F is nonincreasing , I .

in a direction v (v V at a point (21.212) exactly when (using the linear form (1.6)

of F)

V, x + 3(Vx2)v y v +. 3xv 0.

5
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For the normal v = (2x,-1) this quantity is 2x - 3x < 0. Now u - 0 is a Lipschitz

continuous viscosity solution of F = 0 in A. The function 0 - x - - x has a maximum

on 0 at Z0,O), but F(0,0,(1,0)) - 1 > 0, so 0 is not a viscosity subsolution on 0

(0,0). (We conclude that (0,0) in not regular and the requirement of regularity

cannot be relaxed.)

Proof of Theorem 1. Let u ( C(O + I.) be (locally) Lipschitz continuous and a

viscosity solution of F 4 0 in 0. Let z C 1. be regular for 0. Put

z S1 + (z},

if V C C1 (2z) and u - g have z as a local maximum relative to 0. (and hence relative

to a neighborhood of z in 0). We seek to prove that

(1.7) P(z,u(z),DV(z)) C 0.

Without los of generality we may assume that for each small r > 0

(1.8) u(y) - 0(y) < u(x) - p(z) for y E 0 and ly - z- - r,

that is, the maximum is strict. This is because 0 can be perturbed to

9(Y) + ly z- 2 which makes z a strict maximum without affecting Dsp(z). Let

e > 0. we claim that

(1.9} Y€(y) - u(y) - VO(y) - 9/6(y)

has a local maximum y. ( 0 relative to 0 satisfying

-" (1.10) y z as O. C""

Indeed, because u - 0 is continuous, for each small r > 0 we can find "'""

w ( Br(z) rl 0 such that (1.8) holds with w in place of z:

(1.11) u(y) - (y) - u(w) - O(w) for y ( 0 and ly - zj - r.

Now consider TY in the set Br(z) n a. We will argue informally, as it is best if the

reader convinces himself of the validity of what follows: Y. tends to - on 30. On 6.

the other hand, we can guarantee that TY(y) < T(w) on jy - z- r away from a0 by

choosing C small, because of (1.11), and we can make Y,(w) as close as we please to

u;w.-. Cv) y-* a
u(w) - (w). The existence of local maxima ye satisfying (1.10) follows, as does the '"-

fact that we can guarantee .

6 N
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(1.12) YC(yC) u(z) - ().

Net lot se be nearest points to ye in Qj, s - pye. Then, by the assumption that u

in a viscosity subsolution in 0, the regularity of z and (1.5) t

(1.13) F(yCu(yC),D(P(ye) - 2W(ye - at)/(d(ye)) 2 ) < 0.

%

With future uses in mind, we put ."" .

(1.14) Pg - Dl(y), - (ye " zC), Xe - 2e/(d(y,)) 
2 ,

C.

and write (1.13) as

F(yeu(ye)pC - X'V) - F(ZC,u(yt),p1 - v) +( 1 . 1 5 ) 
" ' "

+ F(Z,u(yC),p¢ - XCVC} < 0.

We treat the various terue of this inequality: First, since u is Lipschitz - "

continuous,

(1.16) !P - level < L

where L is a Lipchits constant for u in the neighborhood of x in which ye lies.

(See (4, emma 11.31). Since Ye, at + a, we may use (1.13) and the continuity of F to

conclude that the difference comprised by the first two terms in (1.14) tends to 0

with c. As regards the last term, observe that at + a and v %(x,) imply, because 7

'~F' that
I1.171F(zeulycl.Pc - A€VC1) >Fle¢,u(yClPCl.

Using (1.17) and the prior remark together with (1.15), we may pass to the limit as C

+ 0 to find (1.7) as desired. The came of supersolutions is handled in the parallel

way, and the case of solutions follow from the sub and super cases.

At this point we have not even recovered the results for (0.3) mentioned above,

as they do not require Lipschitz continuity of u. By litample 1 it is clear that ,

further restrictions are needed on F in order to deal with more general us. looking -

at the proof of Theorem 1 and xample 1 will make the condition we are about to

formulate more palatable.

7 " ..
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Definition 4. Let X IF. Then z is regular for F if for all sequences zn C agi and

yn t (NO(zn) + an~) nl a c,'ivergent to z and Xn> 0 satisfying

(1*1) Anlyn - z.12  0 *U..

(1.19) lim inf F(Ynl,P - nyn -Zd) F(,,p-P A~Y Zn) 0

uniformly for bounded u and p.

In particular, the continuity requirement we are imposing is laid only on the

behaviour of F near z and in appropriate directions. We have a

Theorem 2. Let F ( C(QxWcim). Let z I F be regular for 0 and F, u E C(Q + IF) be a .

viscosity solution of F 4 0 (F ;0 0) on U.Then u is also a viscosity solution of F 4

0 (respectively, F ;P 0) on 2 W z. In particular, if u is a viscosity solution of F

=0 on 0, then it is a viscosity solution on 0 [z).

5Proof. The proof follows the proof of Theorem I exactly up to the discussion of

(1.15). With the notation (1.14), the relation (1.16) no longer holds for any L.

However, PC is bounded and if we observe that

XCt VCj2 , XCtyE _ z.12 - 2E/d(ye) + 0,

as follows immediately from (1.12) and the definition of T,, then the assumption that

z is regular for F may be used to claim that

limt inf(F(YCu(yC),P C C - -~cf~ C ~ v) ),C XCVC ; 0

and the proof is completed as before.

Example 3. We may use the situation of Mzample 1 to show that the "rate" in (1.18) is

sharp among power laws. Indeed, with the notation of Example 1, if zn - 0 for all n

and yn is a sequence of positive numbers convergent to zero which satisfies

Xnlyn ~ ~ znlCL X(yn) 1 ~ + 0

we have

F(ynu1P - Ayn) -F(O'u1p - nyn) -Yn n An ~ 0

uniformly for bounded p. That is, the assumptions of Theorem 2 are satisfied except

% . . .
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that the exponent 2 in (1.19) iu replaced by I + a. Yet ye know that the viscosity

solution x(1a*)/(l - a) of F -0 on (0,1) is not a supersolution on [0,1).

Remarks.* The proof of Theorems I and 2 couples the general line of argument used in

the special case (0.3) in [4) and (3) with the use of the distance function to replace

the particular construction used in this case. Use of the distance function is

frequently advantageous in proofs in this subject (see, for example, Lions (8], (91 .

and Jensen 17]). By the way, it is an elementary (and standard) exercise to show that

u(x) - (d(x))112 is a viscosity solution of IiVU1 2 _ I in 2 whether or not 30 isn- ~*.

smooth. it is the only viscosity solution of this equation vanishing on 80 (see

[9) and (41).

Finally, we formulate uniqueness theorems corresponding to Theorems 1 and 2.

There are many possible variants of these results, and these are choosen to simply

illustrate the interaction between Theorems 1 and 2 and uniqueness. corresponding

* Theorem 1 we haves

Theorem U1. let 0 be a bounded open subset of IF. Let F C(0xWcO) satisfy:

For R > 0 there is a strictly increasing function YR such that yR(0) - 0

and F(y,u,p) - F(yov,p) ), yR(u - v) for y ( O, p f IP and u,v E -fl,R).

Let u'v ( C(i) be Lipschits continuous, u be a viscosity solution of F f- 0 and v be a

viscosity solution of F ;0 0 on 0. Let each point of-I~. be regular for 2. Lot u IG v

on 3U\I~p, then u Ic v in 0.

Corresponding to Theorem 2 we have

Theorem U2. rat 91 and P satisfy the assumptions of Theorem U1. In addition, assume

that each point of IF is regular for 2 and F and that for each R there is a continuous

function g~sa(0,) + (0,44) with 91(0) - 0 such that

(1.20) IF(x,u,k(x - y)) - F(y,uALx -y)) -gR(Xlx -y1
2 + I- - yl)

for x,y k U1, X > 0, and Jul IC R. Let U, v f. CMU, u be a viscosity solution of F 4

0, v be.a viscosity solution of F ;0 0 and u v on 911\11. Then u 1C vin U

9
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Remark. The condition ( 1.20) on F Is a weakened version of a uniqueness condition

used in 14]. The relevance of such a None-aided" condition was pointed out by R.

Jensen. See also [51 for unique.. (in unbounded domains) and existence using this

condition, as veil as a generalization of it.

The proofs of Theorems UIl and U2 are, given Theorems 1 and 2, are routine and

will not be given here. See, however, Jensen [7] concerning general formulations of

results on closed noe.

10
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* ABSTRACT (cont.)

solutions of first order nonlinear problems are rare, owing to the formation
of "shocks". This theoretical difficulty has recently been overcome for

equations of Hamilton-Jacobi type via the development of the theory of
viscosity solutions, a sort of generalized solution for which good existence

and uniqueness theorems hold. This note is concerned, in the context of .,

viscosity solutions, with identifying parts of the boundary which are

irrelevant for a given equation from the point of view of requiring data in
order to prove uniqueness. This involves knowing when a viscosity solution 7..

of an equation (in the viscosity sense) in the interior of the domain may be
extended by continuity to a solution in the viscosity sense to points on the

boundary. The results obtained to this effect are supplemented by examples

delimiting their sharpness.
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